If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2-24p-5=0
a = 5; b = -24; c = -5;
Δ = b2-4ac
Δ = -242-4·5·(-5)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-26}{2*5}=\frac{-2}{10} =-1/5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+26}{2*5}=\frac{50}{10} =5 $
| 5=10^x-4 | | 0=4x^2-5x-+4 | | 1/x+1=1/2 | | x-3^2-25=0 | | 2(19-10y)+15y=31 | | 1.3(7−x)=1.1(5−x) | | −5(a+2)−2=−22 | | x-2^2-4=0 | | 8m/8+4/8=m/2 | | 3(x3)-4=3x+ | | x/2-7x/9=1/6 | | x+.03x=113 | | H(x)=3x-1 | | 18z+8.45=9z+25.75 | | 18z+8.45=9z25.75 | | -0.5x=(23/2) | | 21+17f=18f+13 | | 1/3x-10^2-8=16 | | 5/9v-1/3=2/3v+1/3= | | 5x^2/3-4=16 | | F(x)=10x²-50x-60 | | 3x-2^2+1=17 | | z/3-3=30* | | 3.5(n+6)-7=22 | | 2.5m=15.m= | | 2x+3^2=25 | | (-3)^2+(F+3^2)=2x4+6 | | 80-5a^2=0 | | n/51=125/102 | | 4x^2+11=49 | | 6/n=25/4/100 | | -6(6)-7y=-10 |